

Preparation to the Young Physicists' Tournaments' 2013

Ilya Martchenko, ¹* Andrei Klishin, ² Reza Montazeri Namin, ³ Piotr Podziemski, ⁴ Stanisłaŭ Piatruša, ⁵ Łukasz Gładczuk, ⁶ Stanisław Świdwiński, ⁷ and Andrei Schetnikov ⁸

¹ University of Fribourg and Lund University; ² Massachusetts Institute of Technology; ³ Sharif University of Technology; ⁴ Warsaw University of Technology; ⁵ Belarusian State University; ⁶ University of Warsaw; ⁷ Almukantarat, Warsaw; ⁸ SIGMA, Novosibirsk

"

The IYPT combines the qualities which fit very well for Audi:

- an international scientific and technical environment of highly qualified young people,
- · dedicated and collaborative team work,
- examination of complex relationshicps and the ability to explain the considerations.
 All these are the key skills which give birth to innovation.
 For these reasons we have a particular interest to support this event.

Thomas Sigi, AUDI AG, Board Member

The IYPT impresses me.

Herwig Schopper, CERN, 10th Director General

Invitation

- The IYPT is seeking for sponsors
- The IYPT is ideally suited for a sponsorship portfolio that focuses on supporting youth, education, science, and technology
- Being a partner of the IYPT offers a unique and powerful publicity
- The existing partners are excited to speak out on the IYPT in their annual reports, media releases, or bulletins for customers

There are meantime many ways you can help as a volunteer fundraiser :-)

Advertisement

The International Young Physicists' Tournament, IYPT, is a theoretical The international roung Physicists fournament, INP1, is a theoretical and practical competition involves teams of five high school students and practical competition involves teams on investigation and the problems. from all over the world, preparing solutions to seventeen problems. The official language in IYPT is English, and IYPT is a member of WEPHC (World Federation of Physics Competition). NPT was initially organized in 80's in Moscow. As the popularity grew, this tournament organized in ous in Moscow, As the popularity greew, the sourceattern spread out and different countries started to participate. These days, spread out and unineens countries started to participate. These curys, the competition attracts teams from nearly thirty countries and takes use competition aduates search from meanly using counters and takes place in a different country each year. The rules for presentation of the pase an aumeren country each year. Ine rules for presentation of the results, opposition, reviewing and judgment by the independent jury are fixed in the Regulations of PPT(http://www.lypt.org).

Arialan Young Innovative Minds Institute, the official representative of Arialan Young Innovative Minds Institute, the official representative on 1997 in Iran and Amirkabi University were the host of 1997 2011 from VPTF in Isran and Amirkabir University were the host of VPT 2011 from 22 to 31 July, 2011. Among twenty two Countries, South Korea, Austra and Germany were finanza and awarded gold medial. Chinese thoreas media wai given to Sweden, Poland and Croata. Some of the Jutors were invited from University of Phana, Sharif University, Blanci, Auai University and Americabir University and the American University. Juico were invited from University of Tehran, Shart University, Islamic Acad University and Amricaba University and the other juicos were from other counters. The tryst flag was given to device university of the tehrange member of Germany, the host of 25 Mrv Try by OG member of Tam from Antana Varias Interesting and Comments (Markov fremene or vertilenzy, size note or south the option memory or memory of the free of the f

The IPPT Archive is an information site, a comprehensive collection of The tirk accurve is an information site, a comprehensive collection of hundreds of digitized sources unveiling the details and highlights of the tryP's history. The Archive is currently a personal initiative, and bound for a surgestive resolution and an unserface so the surgestion and an annual sector. e Intris neutony. Ine archive is currently a personal initiative; and one for a research project almed at providing a coherent record of the attenues project annee as providing a consent record or eems, results and regulations from the earliest VPTs and VPTs. The roblems, results and regulations from the earliest PPI's and IPPI's the urchive, as it exists now, was initiated through the efforts aimed at Annee as a explosition, was immaned unough the endots senses as lecting and verifying the IVPT-related historical information and g and ventying the the related instorical information and ing eventual data loss. These goals have been achieved eventual case rose intere goins have been achieved weral years of systematic research, interviews, analysis, and an avenue yteas or systematic research, interview, analysis, and affoation of original accounts, documents, articles, books, notes, expondence, manuscripts, and reports in over ten langu pp://archive.lypt.org).

- the first IYPT-themed book where all articles underwent rigorous peer review
- 98 reviews from 25 reviewers н.
- 32 papers selected н.
- revisions, resubmissions before getting accepted

How to tackle the IYPT problems?

- How to structure a report?
- What level is competitive?
- How to set the goals, fix the priorities, and set the direction of the work?
- How were people resolving particular issues in the past?

- Look through the historical solutions in the Archive :-)
- an opportunity for goal-oriented critical learning
- examples, not guidelines
- those solutions were good, but yours should be better!

Call for cooperation

- If you are interested in the idea behind the Kit to structure some earlier knowledge about the physics behind the problems and to encourage students to contrast their personal contribution from this knowledge — your cooperation is welcome
- If more contributors join the work on the Kit for 2013, or plan bringing together the Kit for 2014, good editions may be completed earlier
- It would be of benefit for everybody,
 - students and team leaders, who would have an early reference (providing a first impetus to the work) and a strong warning that IYPT is all about appropriate, novel research, and not about "re-inventing the wheel"
 - jurors, who would have a brief, informal supporting material, possibly making them more skeptical and objective about the presentations
 - the audience outside the IYPT, who benefits from the structured references in e.g. physics popularization activities and physics teaching
 - the IYPT, as a community and a center of competence, that generates vibrant, state-ofthe-art research problems, widely used in other activities and at other events
 - and also the author (-s) of the Kit, who could rapidly acquire a competence for the future activities and have a great learning experience

11

1.00

Is the novel research limited and discouraged by the existing common knowledge and the ongoing work of competing groups? --)

ц

Important information

- The basic goal of this Kit is not in providing students with a start-to-finish manual or in limiting their creativity, but in encouraging them to
 - regard their work critically,
 - look deeper,
 - have a better background knowledge,
 - be skeptical in embedding their projects into the standards of professional research,
 - and, as of a first priority, be attentive in not "re-inventing the wheel"
- An early exposure to the culture of scientific citations, and developing a responsible attitude toward making own work truly novel and original, is assumed to be a helpful learning experience in developing necessary standards and attitudes
- Good examples are known when the Kit has been used as a concise supporting material for jurors and the external community; the benefits were in having the common knowledge structured and better visible
- Even if linked from iypt.org, this file is not an official, binding release of the IYPT, and should under no circumstances be considered as a collection of authoritative "musts" or "instructions" for whatever competition
- Serious conclusions will be drawn, up to discontinuing the project in its current form, if systematic misuse of the Kit is detected, such as explicit failure of citing properly, replacing own research with a compilation, or interpreting the Kit itself as a binding "user guide"
- All suggestions, feedback, and criticism about the Kit are warmly appreciated :-)

Habits and customs

- Originality and independence of your work is always considered as of a first priority
- There is no "correct answer" to any of the IYPT problems
- Having a deep background knowledge about earlier work in a given field may certainly be a plus
- Taking ideas without citing will be a serious misconduct
- Critically distinguishing between personal contribution and common knowledge is likely to be appreciated
- Reading more in a non-native language may be very helpful
- Local libraries and institutions can always help in getting access to paid articles in journals, books and databases
- Is IYPT all about reinventing the wheel, or innovating, creating, discovering, and being able to contrast own work with earlier knowledge and the achievements of others?
- Is IYPT all about competing, or about developing professional personal standards?

These problems have no solution?

- "But, my dear fellows," said Feodor Simeonovich, having deciphered the handwriting. "This is Ben Beczalel's problem! Didn't Cagliostro prove that it had no solution?"
- "We know that it has no solution, too," said Junta. "But we wish to learn how to solve it."
- "How strangely you reason, Cristo... How can you look for a solution, where it does not exist? It's some sort of nonsense."
- "Excuse me, Feodor, but it's you who are reasoning strangely. It's nonsense to look for a solution if it already exists. We are talking about how to deal with a problem that has no solution. This is a question of profound principle..."

Arkady Strugatsky and Boris Strugatsky

Quote from: Arkady Strugatsky and Boris Strugatsky. Monday Begins on Saturday. Translated from the Russian. (The Young Guard Publishing House, Moscow, 1966)

Requirements for a successful IYPT report

- A novel research, not a survey or a compilation of known facts
- A balance between experimental investigation and theoretical analysis
- A comprehensible, logical and interesting presentation, not a detailed description of everything-you-have-performed-and-thought-about
- A clear understanding of the validity of your experiments, and how exactly you analyzed the obtained data
- A clear understanding of what physical model is used, and why it is considered appropriate
- A clear understanding of what your theory relies upon, and in what limits it may be applied
- Comparison of your theory with your experiments
- Clear conclusions and clear answers to the raised questions, especially those in the task
- A clear understanding of what is your novel contribution, in comparison to previous studies
- Solid knowledge of relevant physics
- Proofread nice-looking slides
- An unexpected trick, such as a demonstration *in situ*, will always be a plus

The jury would like to understand...

- What did you actually do?
- Why did you do it?
- How well did you do it?
- Were you able to voice important questions and provide grounded answers?
- What was your major contribution to the understanding of the phenomenon?
- Can you judge the achievements and limits of your work in an objective, skeptical and self-confident manner?
- Are you proficient in relevant physics concepts?
- Were you a self starter?
- Are you at the same time a team player?
- Could you be left unsupervised?

Don't Drink and Derive

 $\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t} = 0 \qquad E = 4\pi \varepsilon_0 \frac{g^2}{r^2} \qquad \tilde{p} = \tilde{u}_0$ $F_{\pi} = G^{\frac{m \times A}{r}} \qquad f(\pi) = \int d\pi g(\pi) e^{\pi t} \qquad \nabla \cdot E = \frac{1}{r^2}$ $\nabla \cdot B = \pi \qquad F_{\pi} = m C^3 \qquad P^{-\frac{m}{r}}$ $F = -1 \qquad f(\pi) = m C^3 \qquad P^{-\frac{m}{r}}$ $\frac{\partial f}{\partial t} = 4 \qquad P^{-\frac{m}{r}}$ $F = \sqrt{1} \qquad e^{-\frac{m}{r}} \qquad e^{-\frac{m}{r}}$

"Key questions": status update

Following the discussions at the IYPT 2012, we are now deciding on whether to discontinue the "Key questions" section in the Reference Kit. We are not including this section neither into the First Day Draft, nor into the Second Draft.

Benefits

- Students, including newcomers, are implicitly encouraged to start work and to dig deeper :-)
- Jurors may use the "Key questions" as brief and informal reference :-)
- The standards are improved in an open-ended, delicate manner, without any "guidelines" or "expectations" for the teams :-)

Objections

- "Key questions" may be getting less necessary: e.g. all IYPT 2012 finalists perfectly contrasted their contribution against existing knowledge and articulated their vision :-)
- A few jurors may feel that the "Key questions" are binding or mandatory, despite their open-ended nature :-(
- A few teams may unconsciously rely on the "Key questions" when working on their own oppositions and reviews, which would contradict the basic aims of our project :-(

There are more things in heaven and earth Horatio Then are dream't of in your philosophie

Shakespeare. *

* The epigraph for the problems selected by the IYPT Founder Evgeny Yunosov on July 4, 2012

Problem No. 1 "Invent yourself"

It is more difficult to bend a paper sheet, if it is folded "accordion style" or rolled into a tube. Using a single A4 sheet and a small amount of glue, if required, construct a bridge spanning a gap of 280 mm. Introduce parameters to describe the strength of your bridge, and optimise some or all of them.

- Bill Gaughran. Folded plates and shell (Structural Forms and Concepts Website, Univ. of Limerick), http://www3.ul.ie/~gaughran/Gildea/page10.htm, http://www3.ul.ie/~gaughran/Gildea/indexmain.htm
- Janice VanCleave. How to Make Paper Bridges (scienceprojectideasforkids.com, 2010), http://scienceprojectideasforkids.com/2010/make-paper-bridges/
- Janice VanCleave. A Paper Bridge (scienceprojectsforkids.com, 2009), http://scienceprojectideasforkids.com/2009/a-paper-bridge/
- Kim van der Helm. Design Project 1: Paper Bridge (101artave.com, 2011), http://101artave.com/archives/502
- Physics Olympics: Paper Bridge Instructions (gravitykills.net), http://www.gravitykills.net/PhysicsOlympics/Bridge.htm
- Basic notes about bridges (brantacan.co.uk), http://www.brantacan.co.uk/starterpages.htm
- Wikipedia: Truss bridge, http://en.wikipedia.org/wiki/Truss_bridge
- Опыт со стаканами (klasika.edu.lv), http://www.klasika.edu.lv/new/VtorojKlass/Dosug/D29.htm
- Мост из бумаги (podelochka.ru), http://podelochka.ru/izuchaem-bumagu/most-izbumagi.html

- Paper bridge (englishplus.hk), http://www.englishplus.hk/ReadUsNow-LittleScientist-5
- Paper Bridge (1 Meter) by DF_Andy, http://dfandy.blogspot.se/2008/12/papr.html
- Wikipedia: Stress, http://en.wikipedia.org/wiki/Stress_(mechanics)
- Wikipedia: Plate theory, http://en.wikipedia.org/wiki/Plate_theory
- Tomasz Wierzbicki. 2.081J/16.230J Plates and Shells (MIT, 2007), http://ocw.mit.edu/courses/mechanical-engineering/2-081j-plates-and-shells-spring-2007/readings/lecturenote.pdf, http://ocw.mit.edu/courses/mechanical-engineering/2-081j-plates-and-shells-spring-2007/readings/analysis.pdf
- Eduard Ventsel and Theodor Krauthammer. Thin Plates & Shells: Theory, Analysis, & Applications (Macell Dekker, 2001), http://fte.edu.iq/eftrathya/46.pdf
- J. E. Gordon. Structures, or Why things don't fall down (Penguin Books, 1978)
- S. P. Timoshenko. History of the strength of materials (McGraw-Hill, 1953)

Problem No. 2 "Elastic space"

The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further. Is it possible to define and measure the apparent "gravitational constant" in such a "world"? also in all conceivable physical experiments in every branch of science. Hence, special relativity, and not just Newtonian mechanics, may be used in free-falling systems as well as in inertial systems, and this is the from a star. Close to the cent curvature of the surface is larg bearing in motion on the surface in a way analogous to the acce body in the vicinity of a star

Figure 12.7. A horizontal, stretched rubber sheet is depressed by a heavy spherical body. The curvature of the sheet mimics the effect of gravity, and a ball bearing follows an orbit that is either elliptical, parabolic, or hyperbolic.

- Wikipedia: Gravity well, http://en.wikipedia.org/wiki/Gravity_well
- Geometry and gravity. In: Edward Robert Harrison. Cosmology: The Science of the Universe (Cambridge Univ. Press, 2000), pp. 224-225, http://books.google.se/books?id=kNxeHD2cbLYC
- Nearer to the heart's desire. In: Edward Robert Harrison. Masks of the Universe: Changing Ideas on the Nature of the Cosmos (Cambridge Univ. Press, 2003), pp. 181-182, http://books.google.se/books?id=tSowGCP0kMIC
- Gravity: Space as a Rubber Sheet (G. Kunstatter, Univ. of Winnipeg, April 2002), http://theory.uwinnipeg.ca/users/gabor/black_holes/slide5.html
- Gravity Is Not A Rubber Sheet (Eddie Current's Blog, March 9, 2012), http://eddiecurrent.blogspot.se/2012/03/gravity-is-not-rubber-sheet.html
- Josef Bemelmans and Michel Chipot. On a variational problem for an elastic membrane supporting a heavy ball. Calculus of Variations and PDE 3, 4, 447-473 (1995)
- C. M. Elliott and A. Friedman. The contact set of a rigid body partially supported by a membrane. Nonlin. Anal. 10, 251–276 (1986)
- N. J. Ferrier and R. W. Brockett. Reconstructing the shape of a deformable membrane from image data. Int. J. Robotics Res. 19, 9, 795-816 (2000)
- Keith J. Mirenberg. Introduction to gravity-well models of celestial objects, http://www.spiralwishingwells.com/guide/Gravity_Wells_Mirenberg.pdf

Problem No. 3 "Bouncing ball"

If you hold a Ping-Pong ball above the ground and release it, it bounces. The nature of the collision changes if the ball contains liquid. Investigate how the nature of the collision depends on amount of liquid inside the ball and other relevant parameters. Log In Explore Help

Search

J Q

The first paper focused on dampening and sloshing in a spherical shell upon impact, by T. Killian *et al.*, seems to be yet under review as of September 2012!

In this high-speed video, two flexible opheres are dropped from the same height. The one on the left is filled with air, the other is partially filled with a liquid. Although both spheres rebound to nearly the same height after the first bounce, their behavior differs drastically after that. The sloshing of the liquid inside the sphere acts as a damper, absorbing energy that would otherwise cause the ball to continue bouncing. The effects of contained liquids sloshing are important for understanding the dynamics of tankers, fuel on spacecrafts, and even how to walk without spilling your coffee.

Effect of sloshing on partially filled ball

by Tadd Truscott 9 months 3 weeks ago

These two Skyballs are falling from the same height, the one on the left is empty while the one on the right is partially filled. Notice that they have nearly the same rebound on the first bounce, however, after the second rebound the fluid motion mitigates a significant portion of the bounce.

IYPT history

- 1 (18.) Superball (2nd YPT, Problems for the Finalists, 1980)
 - Estimate the collision time of a superball (a caoutchouc ball) with floor as it falls from a height of 1 m.
- **8.** Superball (4th YPT, Correspondence Rounds, 1982)
 - A superball falls from a height of 30 cm onto a horizontal surface of a steel plate. How many collisions will take place? What is the duration of each collision? For how long will the superball continue "jumping"? Consider that 20% of superball's kinetic energy goes into heat upon each bounce.
- 4. Splash of water (13th IYPT, 2000)
 - Measure the height reached by splashes of water when a spherical body is dropped into water. Find a relationship between the height of the splashes, the height from which the body is dropped, and other relevant parameters.
- 7. Making a splash (21st IYPT, 2008)
 - A solid object is dropped into water from a height of 50 cm. Investigate the factors that would minimize the splash.

- T. Killian, R. Klaus, and T. T. Truscott. Rebound and jet formation of a fluid-filled sphere. Physics of Fluids (in review, 2012)
- Robert Klaus, Taylor Killian, and Tadd Truscott. Sphere Rebound-Suppression from Sloshing (APS 2010 Conf. poster), http://www.taddtruscott.com/APS2010/Poster_V4.pdf
- Tadd Truscott. Effect of sloshing on partially filled ball (vimeo, 2011), http://vimeo.com/29207632
- O. M. Faltinsen and A. N. Timokha. Sloshing (Cambridge Univ. Press, 2009)
- R. A. Ibrahim. Liquid sloshing dynamics: Theory and applications (Cambridge Univ. Press, 2005), http://books.google.se/books?id=ctvhvH74ZzEC
- H. Norman Abranason, Wen-Hwa Chu, and Luis R. Garza. Liquid sloshing in spherical tanks (NASA report, 1962), http://archive.org/details/nasa_techdoc_19640019488
- Frank T. Dodge and Luis R. Garza. Simulated low-gravity sloshing in spherical tanks and cylindrical tanks with inverted ellipsoidal bottoms (NASA report, 1968), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680009194_1968009194.pdf
- Taylor W. Killian and Tadd Truscott. Mathematical Dynamics of Fluid Motion Inside of a Spherical Boundary (Brigham Young Univ.), http://orca.byu.edu/download.php?file=jug/docs/2012/Killian, %2520Taylor.pdf
- Franklin T. Dodge. The new "dynamic behavior of liquids in moving containers" (Southwest Research Inst., 2000), http://snap.lbl.gov/pub/bscw.cgi/d87835/SwRI_SLOSH_Update.pdf
- Wikipedia: Coefficient of restitution, http://en.wikipedia.org/wiki/Coefficient_of_restitution
- V. D. Kubenko and P. S. Koval'chuk. Nonlinear problems of the dynamics of elastic shells partially filled with a liquid. Int. App. Mech. 36, 4, 421-448 (2000)

- Hans C. Mayer and Rouslan Krechetnikov. Walking With Coffee: Why Does It Spill? Phys. Rev. E 85, 4, 046117 (2012)
- Bernard Budiansky. Sloshing of Liquids in Circular Canals and Spherical Tanks. J. Aerospace Sci. 27, 3, 161-163 (1960); Lockheed Aircraft Corp. report, 1958, http://www.dtic.mil/dtic/tr/fulltext/u2/801718.pdf
- S. Papaspyrou, D. Valougeorgis, and S. A. Karamanos. Refined Solutions of Externally Induced Sloshing in Half-Full Spherical Containers. J. Eng. Mech. 129, 12, 1369-1379 (2003), http://www.pm10.uth.gr/files/Publishedpaper1.pdf
- A. Herczynski and P. D. Weidman. Experiments on the periodic oscillation of free containers driven by liquid sloshing. J. Fluid Mech. 693, 216-242 (2012), http://www.bc.edu/content/dam/files/schools/cas_sites/physics/pdf/herczynski/JFM-693.pdf
- A. A. Lakis and S. Neagu. Free Surface Ace Effects on the Dynamics of Cylindrical shells Partially Filled With Liquid. J. Sound Vibrations 2007, 2, 23, 175-205 (1997)
- Nuri Akkas. Dynamic analysis of a fluid-filled spherical sandwich shell—A model of the human head. J. Biomechanics 8, 5, 275–284 (1975)
- W. Goldsmith and V. H. Kenner. Impact on a simple physical model of the head. J. Biomechanics 6, 1, 1-11 (1973)
- P. Pal. Sloshing of Liquid in Partially Filled Container An Experimental Study. Int. J. Rec. Trends Eng.
 1, 6, 1-5 (2009), http://ijrte.academypublisher.com/vol01/no06/ijrte0106001005.pdf
- P. G. Young. An analytical model to predict the response of fluid-filled shells to impact—a model for blunt head impacts. J. Sound Vibration 5, 1107-1126 (2003), http://oai.dtic.mil/oai/oai? verb=getRecord&metadataPrefix=html&identifier=ADA159324

Problem No. 4 "Soliton"

A chain of similar pendula is mounted equidistantly along a horizontal axis, with adjacent pendula being connected with light strings. Each pendulum can rotate about the axis but can not move sideways (see figure). Investigate the propagation of a deflection along such a chain. What is the speed for a solitary wave, when each pendulum undergoes an entire 360^o revolution?

How to build such a complex system of pendula?

What is actually a solitary wave?

[Mariusz Karol Nowak 2012]

- Wikipedia: Soliton, http://en.wikipedia.org/wiki/Soliton
- Wikipedia: Sine-Gordon equation, http://en.wikipedia.org/wiki/Sine-Gordon_equation
- Alex Kasman. An Introduction to Solitons (College of Charleston), http://kasmana.people.cofc.edu/SOLITONPICS/index.html
- Kanehisa Takasaki. Many Faces of Solitons (Kyoto Univ.), http://www.math.h.kyotou.ac.jp/~takasaki/soliton-lab/gallery/solitons/sg-e.html
- A. Miroshnichenko, A. Vasiliev, and S. Dmitriev. Solitons and Soliton Collisions (Max-Planck-Institut fur Physik komplexer Systeme), http://www.mpipks-dresden.mpg.de/~andreym/solitons/collision/main.html
- Michel Remoissenet. Waves Called Solitons: Concepts and Experiments (Springer, 1999), http://books.google.by/books?id=A72QQ4BDKNIC
- Huang Guoxiang and Xu Zaixin. Kinks and Solitons in Coupled Pendulum Lattices. Chin. Phys. Lett. 9, 12, 659-662 (1992), http://cpl.iphy.ac.cn/EN/Y1992/V9%20%20%20%20%20%20%20%20%20%20/112/659#
- Bruce Denardo, Brian Galvin, Alan Greenfield, Andrés Larraza, Seth Putterman, and William Wright. Observations of localized structures in nonlinear lattices: Domain walls and kinks. Phys. Rev. Lett. 68, 1730–1733 (1992)
- J. Cuevas, L. Q. English, P. G. Kevrekidis, and M. Anderson. Discrete breathers in a forced-damped array of coupled pendula: Modeling, Computation and Experiment. Phys. Rev. Lett. 102, 224101 (2009), arXiv:0902.2129v1 [nlin.PS]
- R. Basu-Thakur, L. Q. English, and A. J. Sievers. Driven intrinsic localized modes in a coupled pendulum array. J. Phys. D 41, 1, 015503 (2008)

- A. C. Scott. A nonlinear Klein-Gordon equation. Am. J. Phys. 37, 52-61 (1969)
- Thierry Dauxois and Michel Peyrard. Physics of solitons (Cambridge Univ. Press, 2006)
- A. B. Шаповалов, Л. А. Краснобаева. Солитоны уравнения синус-Гордона. Томск: ТГУ, 2009
- А. Т. Филиппов. Многоликий солитон. М.: Наука, 1990
- Ramaz Khomeriki and Jérôme Leon. Tristability in the pendula chain. Phys. Rev. E 78, 057202 (2008), arXiv:0810.3621v1 [nlin.PS]
- Solitons kink and anti-kink collisions (vimeo.com, from Daniel Piker), http://vimeo.com/35462854
- Soliton-Test3 (youtube.com, from BTwaveNo, April 5, 2009), http://www.youtube.com/watch? v=SAbQ4MvDqEE
- Visualizing Solitons (youtube.com, from gravityandlevity, June 11, 2009), http://www.youtube.com/watch?v=Ud7STKWNmQw
- Solitons kink and anti-kink collisions (vimeo.com, from Daniel Piker, January 22, 2012), http://vimeo.com/35462854
- Solitons (vimeo.com, from carolune, March 29, 2011), http://vimeo.com/21661807
- Storing solitons in a potential well (youtube.com, from Mariusz Karol Nowak, April 1, 2012), http://www.youtube.com/watch?v=tBMp373j6po
- Pendulum Chain, Part 1 (youtube.com, from Uwe Schwarz), http://www.youtube.com/watch? v=Ozt1VkeK52E
- Pendulum Chain, Part 2 (youtube.com, from Uwe Schwarz), http://www.youtube.com/watch? v=iOc3idE88LM

Problem No. 5 "Levitation"

A light ball (e.g. a Ping-Pong ball) can be supported on an upward airstream. The airstream can be tilted yet still support the ball. Investigate the effect and optimise the system to produce the maximum angle of tilt that results in a stable ball position.

- Faire léviter une balle de ping-pong (youtube.com, from Unisciel, 03.02.2011), http://www.youtube.com/watch?v=WWHXTumy4RQ
- Bruce makes a basket with the Bernoulli ball (youtube.com, from PhysicsFactory, 24.08.2008), http://www.youtube.com/watch?v=69LTmCR4qxg
- Bernoulli ball experiment || www.tomzooi.nl (youtube.com, from tomzooy, 21.06.2008), http://www.youtube.com/watch?v=pWlkAEpGkDQ
- suspended pingpong ball, Bernoulli's Principle (youtube.com, from iflamenko, 18.10.2006), http://www.youtube.com/watch?v=fgHvC55AKig
- E. H. Brandt. Levitation in physics. Science 243, 4889, 349–355 (1989)
- P. Gluck. A delicate balance: Hovering balloons in an air stream. Phys. Teach. 44, 9, 574– 575 (2006)
- R. Goodman. Bernoulli ball it's a blast. Phys. Teach. 23, 4, 219 (1985)
- C. Waltham, S. Bendall, and A. Kotlicki. Bernoulli levitation. Am. J. Phys. 71, 2, 176-179 (2003)
- Kirk T. McDonald. Levitating beachballs. Am. J. Phys. 68, 4, 388-389 (2000)
- Kirk T. McDonald. Levitating beachballs (Princeton Univ., 1994), http://www.hep.princeton.edu/~mcdonald/examples/beachball.pdf

- Bernoulli's Principle (youtube.com, from jason238967, 18.10.2007), http://www.youtube.com/watch?v=nQqJGEHx5eQ
- Bengt Fornberg. Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190, 471-489 (1988)
- Notes on 1.63 Advanced Environmental Fluid Mechanics (C. C. Mei, 2001), http://web.mit.edu/fluids-modules/www/low_speed_flows/2-5Stokes.pdf
- Flow past a sphere II: Stoke's lat, the bernoulli equation, turbulence, boundary layers, flow separation, http://ocw.mit.edu/courses/earth-atmospheric-and-planetarysciences/12-090-special-topics-an-introduction-to-fluid-motions-sediment-transport-andcurrent-generated-sedimentary-structures-fall-2006/lecture-notes/ch3.pdf
- Jens Eggers. 3.5 Flow past a sphere (Univ. of Bristol), http://www.maths.bris.ac.uk/~majge/week6.pdf
- T. A. Johnson and V. C. Patel. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech 378, 19-70 (1999)

Problem No. 6 "Coloured plastic"

In bright light, a transparent plastic object (e.g. a blank CD case) can sometimes shine in various colours (see figure). Study and explain the phenomenon. Ascertain if one also sees the colours when various light sources are used.

Something similar seen in plastic objects between crossed polarizers?

A piece of common plastic...

...reveals birefringence in transmission (not in reflection!)

"Целлофан". Если между двумя скрещенными поляризаторами поместить скомканный кусочек целло/чна, то он продстанет в виде красочного разноиветного "кристалла". Предложите интересные опыты с поляризованным светом.

IYPT history

That specific effect was topic for a problem at the 4th YPT (1982)

- Yes: residual strain in industrially stamped plastic objects may result in stress birefringence
- It is well visible with crossed polarizers
- Why the colors are seen when no extra polarizers are used?

Look-no polaroids!

We had often noticed that when certain plastic articles were viewed by reflected light it was sometimes possible to see faint diffuse coloured patches, looking rather like the interference pattern caused by thin films. The colours were relatively clear for the transparent shield over the magazine in a Leitz Pradolux slide projector, when viewed by extraneous light from the projector lamp, and also for some cheap set squares used in a teaching laboratory, when they were examined by indirect sunlight.

A little work with detergent was sufficient to demonstrate that the colours were not the consequence of a surface film.

10 mm
- M. M. Bond and D. W. Hadley. Photoelasticity without polaroids. Phys. Educ. 9, 411 (1974)
- J. T. Pindera and G. Cloud, On dispersion of birefringence of photoelastic materials. Exp. Mech. 6, 9, 470-480 (1966)
- Birefringence (youtube.com, from syme4284, 12.03.2009), http://www.youtube.com/watch?v=cLXaiuiX58s
- View Stress in Transparent Materials (youtube.com, from jeriellsworth, 30.06.2009), http://www.youtube.com/watch?v=FkXwNQwrxZ4
- Stress Makes Them Bi (Swans on Tea, September 7, 2008), http://blogs.scienceforums.net/swansont/archives/754
- Photoelasticity. In: James W. Phillips. Experimental Stress Analysis (Univ. of Illinois at Urbana-Champaign, 1998), http://www.ifsc.usp.br/~lavfis/BancoApostilasImagens/ ApEfFotoelastico/photoelasticity.pdf
- Wikipedia: Birefringence, http://en.wikipedia.org/wiki/Birefringence
- Wikipedia: Photoelasticity, http://en.wikipedia.org/wiki/Photoelasticity
- Wikipedia: Stress analysis, http://en.wikipedia.org/wiki/Stress_analysis
- Wikipedia: Brewster's angle, http://en.wikipedia.org/wiki/Brewster's_angle

- How Do We Know Light Behaves as a Wave? (physicsclassroom.com), http://www.physicsclassroom.com/class/light/u12l1e.cfm
- V. G. Fesenkov. Some polarisation properties of the daylight sky. Soviet Astronomy 9, 5, 836-839 (1966)
- Stress analysis using photoelasticity (youtube.com, from valenciaupv, 23.09.2011), http://www.youtube.com/watch?v=Wgi2cSiHZJ8
- Photoelasticity: Introduction to photoelastic stress analysis apparatus (youtube.com, from flengets, 30.01.2011), http://www.youtube.com/watch?v=BdSaA9byKms
- Douglas C. Mark. Residual stress birefringence in optical materials (Hinds Instruments, November 30, 2011), http://www.hindsinstruments.com/2011/11/residual-stressbirefringence-in-optical-materials/
- Alex S. Redner and Barbara Hoffman. Residual stress testing for transparent polymers. Testing (1999), http://www.strainoptics.com/files/Residual%20Stress%20Testing.pdf

Problem No. 7 "Hearing light"

Coat one half of the inside of a jar with a layer of soot and drill a hole in its cover (see figure). When light from a light bulb connected to AC hits the jar's black wall, a distinct sound can be heard. Explain and investigate the phenomenon. ART. XXXIV.—On the Production and Reproduction of Sound by Light; by ALEXANDER GRAHAM BELL, Ph.D.

[Read before the American Association for the Advancement of Science, in Boston, August 27, 1880.]

In bringing before you some discoveries made by Mr. Sumner Tainter and myself, which have resulted in the construction of apparatus for the production and reproduction of sound by means of light, it is necessary to explain the state of knowledge which formed the starting point of our experiments.

I shall first describe that remarkable substance "selenium," and the manipulations devised by previous experimenters; but the final result of our researches has widened the class of substances sensitive to light vibrations, until we can propound the fact of such sensitiveness being a general property of all matter.

We have found this property in gold, silver, platinum, iron, steel, brass, copper, zinc, lead, antimony, german-silver, Jenkin's metal, Babbitt's metal, ivory, celluloid, gutta-percha, hard rubber, soft vulcanized rubber, paper, parchment, wood, mica, and silvered glass; and the only substances from which we have not obtained results, are carbon and thin microscope glass.*

* Later experiments have shown that these are not exceptions. AM. JOUR. SCI.--THIRD SERIES, VOL. XX, No. 118.--OCT., 1880. THE

AMERICAN

JOURNAL OF SCIENCE.

EDITORS JAMES D. AND E. S. DANA, AND B. SILLIMAN. ASSOCIATE EDITORS PROFESSORS ASIA GRAY, JOSIAH P. COOKE, AND JOHN TROWBRIDGE, or CAMMERICE,

PROFESSORS H. A. NEWTON AND A. E. VERRILL, OF New Haven, PROFESSOR GEORGE F. BARKER, OF PHILADELPHIA.

THIRD SERIES.

VOL. XX.-[WHOLE NUMBER, CXX.]

Nos. 115-120.

JULY TO DECEMBER, 1880.

WITH NINE PLATES.

NEW HAVEN, CONN.: J. D. & E. S. DANA. 1880.

What is the radiation spectrum for a light bulb? Does it only produce optical radiation?

Why discharging an electronic flash unit near a cymbal will produce a sound from the cymbal?

2008

- Wikipedia: Photoacoustic effect, http://en.wikipedia.org/wiki/Photoacoustic_effect
- Manfred Euler, Kurt Niemann, and Andreas Müller. Hearing Light. Phys. Teach. 38, 6, 356-358 (2000), www.uni-landau.de/physik/Hearing%20Light.pdf
- A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci. 20, 305 (1880), http://ajs.library.cmu.edu/books/pages.cgi?call=AJS_1880_020_1880_INDEX_11-20&layout=vol0/part0/copy0&file=00000311
- Rayleigh. Photophone. Nature 23, 586, 274-275 (1881)
- John Tyndall. Action of an intermittent beam of radiant heat upon gaseous matter. Proc.
 R. Soc. London 31, 307-317 (1881)
- W. C. Röntgen. On Tones Produced by the Intermittent Irradiation of a Gas. Philos. Mag. 11, 308 (1881)
- A. G. Bell. Upon the production of sound by radiant energy Philos. Mag. 11, 510-528 (1881).
- P. Hess and M. Fiedler. Laser Excitation of Acoustic Modes in Cylindrical and Spherical Resonators: Theory and Applications. In: Topics in Current Physics: Photoacoustic, Photothermal and Photochemical Processes in Gases (Ed. P. Hess, Springer, 1989), p. 85.

- Allan Rosencwaig and Allen Gersho, Allen. Theory of the photoacoustic effect with solids. Journal of Applied Physics 47, 1, 64-69 (1976)
- C. Haisch and R. Niessner. Light and sound photoacoustic spectroscopy. Spectrposc. Eur. 14, 5, 10-15 (2002)
- Hugo Fastl and Eberhard Zwicker. Psychoacoustics (Springer, Berlin, 1990), books.google.com/?id=eGcfn9ddRhcC
- Kai Sun, Nan Wu, Ye Tian, and Xingwei Wan. Simulation on photoacoustic conversion efficiency of optical fiber-based ultrasound generator using different absorbing film materials. Proc. SPIE 7982, 798213, 798213-798213-7 (2011)
- S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer. Laser-generated ultrasound: its properties, mechanisms and multifarious applications. J. Phys. D.: App. Phys. 26, 3, 329 (1993)
- E. Biagi, F. Margheri, and D. Menichelli. Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 48, 6, 1669-1680 (2001)

Problem No. 8 "Jet and film"

A thin liquid jet impacts on a soap film (see figure). Depending on relevant parameters, the jet can either penetrate through the film or merge with it, producing interesting shapes. Explain and investigate this interaction and the resulting shapes.

APS » Journals » Phys. Rev. E » Volume 86 » Issue 3 Phys. Rev. E 86, 036303 (2012) [5 pages]

Jet impact on a soap film

Abstract	References	No Citing Articles	Supplemental Material
Download: PDF (607 kE) Export: BibTeX or End	INote (RIS)	

Geoffroy Kirstetter, Christophe Raufaste^{*}, and Franck Celestini[†]

Laboratoire de Physique de la Matière Condensée, CNRS UMR 7336, Université de Nice Sophia-Antipolis, 06108 Nice, France

Received 26 July 2011; revised 13 March 2012; published 4 September 2012

[Kirstetter et al. 2012]

Start

The first paper on the effect, by Geoffroy Kirstetter *et al*., is published on September 4, 2012

Transient rebound of the jet on the soap Christophe Raufaste, 2011

- Geoffroy Kirstetter, Christophe Raufaste, and Franck Celestini. Jet impact on a soap film. Phys. Rev. E 86, 3, 036303 (2012), arXiv:1203.0842v1 [cond-mat.soft]
- Geoffroy Kirstetter, Christophe Raufaste, and Franck Celestini. Interaction of a jet with a liquid foam: a film scale study. http://www.ae.utexas.edu/IUTAM2011/Raufaste.pdf
- V. Bergeron. Forces and structure in thin liquid soap films. J. Phys.: Cond. Mat. 11, R215–R238 (1999)
- When a Jet Hits a Soap Film (technologyreview.com, March 7, 2012), http://www.technologyreview.com/view/427161/when-a-jet-hits-a-soap-film/
- Stable Kaye effect on a thin soap film (Devaraj van der Meer, Univ. of Twente), http://stilton.tnw.utwente.nl/people/devaraj/research_f.html
- M. Versluis, C. Blom, D. van der Meer, K. van der Weele, and D. Lohse. Leaping shampoo and the stable Kaye effect. J. Stat. Mech.: Theory, Exp. 7, P07007 (2006), arXiv:physics/0603183 [physics.flu-dyn]
- E. I. Kats. Physics of soap films. Mol. Cryst. and Liquid Cryst. 292, 199-212 (Jan. 1997)
- F. Graner. Film de savon géant (2005), http://www-lsp.ujfgrenoble.fr/vie_scientifique/annee_mondiale_de_la_physique/films_savon/
- P.-G. de Gennes, F. Brochard-Wyart, D. Quéré. Gouttes, bulles, perles et ondes (Paris, éd. Belin, 2002)

- C. V. Boys. Soap bubbles, their colours and the forces which mould them (Dover, New York, 1959)
- A. G. Cook. Tough soap films and bubbles. J. Chem. Educ. 15, 161 (1938)
- A. L. Kuehner. Long lived soap bubbles. J. Chem. Educ. 35, 337 (1958)
- C. L. Stong. How to blow soap bubbles that last for months or even years. Sci. Amer.
 220 (5), 128 (1969)
- C. L. Stong. How to blow bubbles that survive for years. Sci. Amer. 229 (1), 110 (1973)
- V. Casteletto, I. Cantat, D. Sarker, R. Bausch, D. Bonn, and J. Meunier. Stability of Soap Films: Hysteresis and Nucleation of Black Films. Phys. Rev. Lett, 90, 048302 (2003)
- F. Brasz. Soap Films: Statics and Dynamics (Princeton, 2010), http://www.princeton.edu/~stonelab/Teaching/FredBraszFinalPaper.pdf
- A. S. C. Lawrence. Stability in soap films. Nature, 125, 970-971 (1930)
- Flowing Soap Films (Univ. at Buffalo), http://www.mae.buffalo.edu/research/laboratories/combustionlab/Flowing%20soap %20films/Flowing%20soap%20films.htm

Problem No. 9 "Carbon microphone"

For many years, a design of microphone has involved the use of carbon granules. Varying pressure on the granules produced by incident sound waves produces an electrical output signal. Investigate the components of such a device and determine its characteristics.

- Carbon Charcoal Microphone (youtube.com, from teacherinstitute, 13.05.2011), http://www.youtube.com/watch?v=uAnImoei_Co
- J. B. Calvert. Microphones (Univ. of Denver, 2003), http://mysite.du.edu/~jcalvert/tech/microph.htm
- W. C. Barney. Theory of the action of the carbon microphone what is it? Scientific American Supplement, 446 (July 19, 1884), http://www.gutenberg.org/files/11385/11385-h/11385-h.htm#14
- Wikipedia: Carbon microphone, http://en.wikipedia.org/wiki/Carbon_microphone
- The Double-Button Carbon-Granule Microphone (vias.org), http://www.vias.org/albert_ecomm/aec04_electroacoustic_devices_010.html
- Types of Microphones Part 1 (youtube.com, from 7rockey, 27.12.2009), http://www.youtube.com/watch?v=yMKP3q3KCBw
- home made carbon microphone (youtube.com, from sorrisoaperto, 01.07.2011), http://www.youtube.com/watch?v=2DcuEndlZ4w
- Carbon Charcoal Microphone (youtube.com, from teacherinstitute, 13.05.2011), http://www.youtube.com/watch?v=uAnImoei_Co
- Razor Blade and Graphite Microphone Suicide Mic (youtube.com, from jeriellsworth, 01.06.2010), http://www.youtube.com/watch?v=BhDzyK3-RSU
- D. H. Clewell. Pressure Measuring Device (US Patent, 1951), http://www.google.com/patents/US2548947
- W. H. Huth et al. Microphone (US Patent, 1939), http://www.google.com/patents/US2171793
- W. C. Jones. Condenser and Carbon Microphones—Their Construction and use. SMPTE Mot. Imag. J. 16, 3-22 (1931)

Problem No. 10 "Water rise"

Fill a saucer up with water and place a candle vertically in the middle of the saucer. The candle is lit and then covered by a transparent beaker. Investigate and explain the further phenomenon.

- Harkirat S. Dhindsa. Candle burning in an inverted jar over water in a trough experiment: Science teachers' conceptions, http://www.math.harvard.edu/~knill/pedagogy/waterexperiment/dhindsa.pdf, http://conference.nie.edu.sg/paper/Converted%20Pdf/ab00354.pdf
- Oliver Knill. Getting the facts right (Harvard Univ., 9/24/2006), http://www.math.harvard.edu/~knill/pedagogy/waterexperiment/index.html
- Francisco Vera, Rodrigo Rivera, and César Núñez. Burning a candle in a vessel, a simple experiment with a long history. Sci & Educ 20, 881–893 (2011), http://www.math.harvard.edu/~knill/pedagogy/waterexperiment/vera_rivera_nunez.pdf
- A burning candle needs oxygen (wonderquest.com, May 19, 2008), http://www.wonderquest.com/candle-out.htm
- H. J. Kreuzer and S. H. Payne. Thermodynamics of heating a room. Am. J. Phys. 79, 1, 74 (2011)
- Egg in the Bottle Experiment with a Twist (youtube.com, SteveSpanglerScience, 19.08.2008), http://www.youtube.com/watch?v=mpC5zlmtm-g
- Wine in an upside down glass trick (youtube.com, from heyscuba, 22.05.2007), http://www.youtube.com/watch?v=znL5yLgDavk
- CSAV Hawaii: Best Science Magic Trick Candle & Water (youtube.com, from CenterStudyVolcanoes, 14.12.2010), http://www.youtube.com/watch?v=xwKbpsOmHjE

- Jeremy B. Caplan. The Hidden Complexities of a "Simple" Experiment. Phys. Teach. 32, 5, 310-314 (1994)
- James P. Birk. The Persistence of the Cand-and-Cylinder Misconception. J. Chem. Educ. 76, 7, 914 (1999)
- Brian Rohring. The captivating chemistry of candles (myteacherpages.com), http://www.myteacherpages.com/webpages/CCPHS/files/captivating%20chemistry%20of %20candles.pdf
- Candle and Water Cool science experiment (youtube.com, from igor30, 07.11.2011), http://www.youtube.com/watch?v=fzapvChi2iM
- Fire and Water Magic Trick (youtube.com, from futsang, 16.08.2011), http://www.youtube.com/watch?v=hd7vbYzodoo
- Robert Krampf. Candle in a Bottle Experiment #440 (atozteacherstuff.com), http://www.atozteacherstuff.com/pages/5879.shtml
- C. G. Hodgkin. Making improvements to a simple experiment on combustion. Australian Science Teachers Journal 41, 1, 47 (1995), http://home.ntelos.net/~rollinso/Candle/CandleExpt.html
- Why does the water rise after candle goes out? (wiki.answers.com), http://wiki.answers.com/Q/Why_does_the_water_rise_after_candle_goes_out
- Thirsty candle (sciencesquad.com), http://sciencesquad.questacon.edu.au/activities/thirsty.html

Problem No. 11 "Ball Bearing Motor"

A device called a "Ball Bearing Motor" uses electrical energy to create rotational motion. On what parameters do the motor efficiency and the velocity of the rotation depend? (Take care when working with high currents!) DISCUSSION

Hydrodynamic Gyroscope¹

R. A. MILROY.² In December, 1959, I completed an electrical circuit by passing current through ball bearings just as Mr. Then did in building his hydrodynamic gyroscope. Obviously, Mr. Then was as unaware of the motoring effect generated by passing current through ball bearings as I was. Fortunately, I was working on a smaller mechanism where the effect was more pronounced; however, there are two ways I can read Mr. Then's statement, "The whole assembly is remarkably free of friction about the vertical and horizontal axes, spinning completely around." Mine did spin around at nearly 1000 rpm with nothing driving it but the electrical current passing through the ball bearings.

A ball-bearing motor can be easily constructed by placing two bearings on a conductive shaft and passing current into the outer race of one, through the balls to the inner race, down the shaft to the inner race of the other bearing, through the balls, and out of the outer race. The motor requires practically no voltage but rather high current and will run in either direction on a-c or d-c current, Fig. 1.

Starting from these ideas I calculated the fields and the corresponding torques for a cylinder and a sphere in 1976. I was surprised to find a zero torque. A closer look revealed why the analogy with the kink instability is incomplete. Apparently another yet unknown phenomenon is responsible for the torque. In 1978 Gruenberg published an article in the American Journal of Physics [1] in which he started from the same set of equations and used the same analysis as I did. He did find a torque already in first order of an expansion with the angular velocity as the expansion parameter. Unfortunately, this nonzero torque turned out to be due to an algebraic error.

I. INTRODUCTION

In a brief note, Milroy¹ describes an experiment in which a current is passed through a pair of ball bearings. The experimental setup is reproduced in Fig. 1. Milroy noted that when sufficiently large currents are applied the bearings will act as motors. The ball bearing motor will run in either direction on both ac and dc. It is often self-starting on dc. When it is self-starting, the direction of rotation may be clockwise or counterclockwise. When it is not self-starting, it can be started by a push in either direction.

The author has repeated and confirmed these experiments. Since he was not able to find a theoretical explanation of the effect in the literature, the following theory was developed. It appears to explain all the observed phenomena. While the mathematics is somewhat involved, the basic ideas are quite simple.

Abstract—We discuss and clarify a number of very serious mistakes and misunderstandings concerning the mechanism of the ball bearing motor. Specifically we show that Gruenberg's mechanism, which is equivalent to the phenomenological model of Watson, Williams, and Crimp, does not explain the ball bearing motor behavior at all, because the predicted total torque T acting on the ball is T = 0. In addition, another wrong conclusion obtained by WWC is their interpretation of their experimental results concerning the relation of speed versus current.

> Abstract: Two different ball-bearing motors have been investigated. The experimental results do not agree with the prevailing electromagnetic theories of ball-bearing motor operation. The results suggest that the driving force arises from an electromagnetic interaction between the ball race and the surface of the ball in the region of their contact point.

- Wikipedia: Ball bearing motor, http://en.wikipedia.org/wiki/Ball_bearing_motor
- R. A. Milroy. Discussion: "Hydrodynamic Gyroscope" (Then, J. W., 1966, ASME J. Appl. Mech., 33, pp. 768–769.) J. Appl. Mech. 34, 2, 525 (1967)
- H. Gruenberg. The ball bearing as a motor. Am. J. Phys. 46, 12, 1213-1219 (1978)
- A. A. Mills, The Ball-Bearing Electric Motor. Phys. Ed. 15, 102 (1980)
- M. P. H. Weenink. The electromagnetic torque on axially symmetric rotating metal cylinders and spheres. App. Sci. Research 37, 1-2, 171-182 (1981)
- P. G. Moyssides and P. Hatzikonstantinou. Study of electrical characteristics of the ball bearing motor IEEE: Trans. Magnetics M-26, 1274-1281 (1990)
- P. Hatzikonstantinou and P. G. Moyssides. Explanation of the ball bearing motor and exact solutions of the related Maxwell equations. J. Phys. A: Math. Gen. 23, 14, 3183-3197 (1990)
- D. B. Watson, M. R. Williams, C. S. Crimp. Ball-Bearing Motors. IEE Proc. Sci. Meas. Technol. 140, 4, 281-286 (1993), http://www.libsou.com/pdf/00286868.pdf
- D.B. Watson and A.M. Watson. Linear ball-bearing motor. IEE Proc. Sci. Meas. Technol. 141, 224 (1994)
- D. B. Watson and A. M. Watson. Non-ferromagnetic linear ball-bearing motors. J. Phys. D: App. Phys. 29, 3, 529-532 (1996)
- P. G. Moyssides and P. Hatzikonstantinou. Ball bearing motors. IEEE Trans.: Magn. 33, 6, 4566-4569 (1997)

- D. B. Watson, S. M. Patel, and Sedcole, N.P. Ball-bearing motor effect with rolling cylinders. IEE Proc. Sci. Meas. Technol. 146, 2, 83-87 (1999)
- D.B. Watson and W.R. Watson, Ball Bearing and Rolling Cylinder Motors, IEEE Trans. Mag. 35, 562 (1999)
- Mike Harrison. The Ball-Bearing electric motor (Mike's Electric Stuff), http://www.electricstuff.co.uk/bbmotor.html
- John Storey. How real electric motors work (Univ. of New South Wales, 2006), http://www.phys.unsw.edu.au/hsc/hsc/electric_motors8.html, http://www.phys.unsw.edu.au/hsc/hsc/electric_motors10.html
- Kirk T. McDonald. Ball-Bearing Motor (Princeton Univ., May 17, 2011), http://www.physics.princeton.edu/~mcdonald/examples/motor.pdf
- Ball bearing motor (youtube.com, from mcallister61407, 14.04.2011), http://www.youtube.com/watch?v=tHZbHMFWS2k
- Ball Bearing Motor (youtube.com, from progressivetech1, 11.06.2011), http://www.youtube.com/watch?v=o0ktomInqp8
- Ball bearing motor(None magnet motor) (youtube.com, from ddserpop, 10.06.2012), http://www.youtube.com/watch?v=d4SK1Q00FrA
- Ball-bearing Motor Or How to confuse people with a simple machine (fdscience.org), http://www.fdscience.org/uneko/bbmotor.htm

Problem No. 12 "Helmholtz carousel"

Attach Christmas tree balls on a low friction mounting (carousel) such that the hole in each ball points in a tangential direction. If you expose this arrangement to sound of a suitable frequency and intensity, the carousel starts to rotate. Explain this phenomenon and investigate the parameters that result in the maximum rotation speed of the carousel.

Resonatoren.

Dergleichen gespannte Membranen sind nun zu diesen und ähnlichen Versuchen über Partialtöne von zusammengesetzten Klangmassen sehr brauchbar. Sie haben den grossen Vorzug, dass bei ihrer Anwendung das Ohr gar nicht ins Spiel kommt, aber sie sind nicht sehr empfindlich gegen schwächere Töne. In der Empfindlichkeit werden sie bei weitem übertroffen durch die von mir angegebenen Resonatoren. Es sind das gläserne oder metallene Hohlkugeln oder Röhren mit zwei Oeffnungen, abgebildet in Fig. 16a und b. Die eine Oeffnung a hat scharf abgeschnittene Ränder, die nicht sehr empfindlich gegen schwächere Töne. In der Empfindlichkeit werden sie bei weitem übertroffen durch die von mir angegebenen Resonatoren. Es sind das gläserne oder metallene Hohlkugeln oder Röhren mit zwei Oeffnungen, abgebildet in Fig. 16a und b. Die eine Oeffnung a hat scharf abgeschnittene Ränder, die

Fig. 16a.

andere b ist trichterförmig und so geformt, dass man sie in das Ohr einsetzen kann. Die letztere pflege ich mit geschmolzenem Siegellack zu umgeben, und wenn dieser so weit erkaltet ist, dass er zwar mit den Fingern ungestraft berührt werden kann, aber doch noch weich ist, drücke ich diese Oeffnung in den Gehörgang

73

ЗАДАЧИ ФИНАЛЬНОГО ТУРА

На решение этих задач с представлением письменных отчетов ксмандам отводилось два часа.

- 43 -

23. Резонатор Гельмтольца

Рассчитайте и измерьте резонансную частоту звуковых колесаний в сферической колое с узким горлышком. Объем колон 0,5 л, площадь сечения горлышка 4 см, высота горлышка 2 см, скорость звука в воздухе 330 м/сек.

§160]

АКУСТИЧЕСКИЕ РЕЗОНАТОРЫ

499

ляя в это выражение найденные значения к и т, получим:

$$\omega = \sqrt{\frac{S_{\gamma p}}{V_{lp}}}$$

или, так как $V \gamma p_i p = c$,

$\omega = c \sqrt{\frac{s}{VI}}.$ (21.15)

Изменяя размеры сосуда и горла, можно получить резонаторы с собственными частотами, охватывающими весь диапазон звуковых частог.

Из выражения (21.15) частоты собственных колебаний резонатора для соответствующей дляны волны получаем:

$$\lambda = 2\pi \sqrt{\frac{Vl}{S}}.$$
 (21.16)

- There was a problem in a hydrodynamics book that was being discussed by all the physics students.
- The problem is this: You have an S-shaped lawn sprinkler an S-shaped pipe on a pivot - and the water squirts out at right angles to the axis and makes it spin in a certain direction. Everybody knows which way it goes around; it backs away from the outgoing water.
- Now the question is this: If you had a lake, or swimming pool a big supply of water - and you put the sprinkler completely under water, and sucked the water in, instead of squirting it out, which way would it turn? Would it turn the same way as it does when you squirt water out into the air, or would it turn the other way?
- The answer is perfectly clear at first sight.
- The trouble was, some guy would think it was perfectly clear one way, and another guy would think it was perfectly clear the other way.
- So everybody was discussing it.
- I remember at one particular seminar, or tea, somebody went nip to Prof John Wheeler and said, "Which way do you think it goes around?"
- Wheeler said, "Yesterday, Feynman convinced me that it went backwards. Today, he's convinced me equally well that it goes around the other way. I don't know what he'll convince me of tomorrow!"

Is there a specific air flow close to the neck of the Christmas tree ball?

- Moving objects by sound (youtube.com, from LjudochVibrationer, 24.08.2011), http://www.youtube.com/watch?v=SemQS4RLeFU
- Daniel A. Russell. Acoustic Propulsion (youtube.com, drdanku, 04.01.2011), http://www.youtube.com/watch?v=je7eLZS6GG0
- Daniel A. Russell. Acoustic Propulsion Part 2, measurement of thrust (youtube.com, drdanku, 06.01.2011), http://www.youtube.com/watch?v=uJ8B8k1ISQg
- Joe Wolfe. Helmholtz Resonance (Univ. of South Wales), http://www.phys.unsw.edu.au/jw/Helmholtz.html
- K. Uno Ingard. Notes on Acoustics (Infinity Science Press, 2008)
- Wikipedia: Helmholtz resonance, http://en.wikipedia.org/wiki/Helmholtz_resonance
- Tom Irvine. Beverage Bottles as Helmholtz Resonators (vibrationdata.com), http://www.vibrationdata.com/Newsletters/January2004_NL.pdf
- R. Victor Jones. Helmholtz Resonators: Basic Analytic Devices (Univ. of Harvard), http://people.seas.harvard.edu/~jones/cscie129/nu_lectures/lecture3%20/ho_helmholtz/ ho_helmholtz.html
- Ricardo R. Boullosa and Felipe Orduña-Bustamante. The reaction force on a Helmholtz resonator driven at high sound pressure amplitudes. Am. J. Phys. 60, 8, 722-726 (1992)

- Alejandro Jenkins. An elementary treatment of the reverse sprinkler. Am. J. Phys. 72, 10, 1276-1282 (2004), arXiv:physics/0312087v3 [physics.flu-dyn]
- Edward C. Creutz. Feynman's reverse sprinkler. Am. J. Phys. 73, 3, 198-199 (2005)
- Alejandro Jenkins. Sprinkler head revisited: momentum, forces, and flows in Machian propulsion. Eur. J. Phys. 32, 5, 1213-1226 (2011), arXiv:0908.3190v1 [physics.flu-dyn]
- J. Y. Renaud, Flux d'aspiration, approche théorique, 2006, http://www.eclecticspace.net/poppop/jy/Flux_Aspiration_Approche_Theo_V2_0.pdf
- Wikipedia: Feynman sprinkler, http://en.wikipedia.org/wiki/Feynman_sprinkler
- Ernst Mach. Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargerstellt, (Leipzig: Brockhaus, 1883), pp. 299-301
- T. Surti, N. Fossum, V. Golubev, M. Mankbadi, H. Nakhla. Navier-Stokes simulations for flow control and micro propulsion. Proc. AIAA 2010-1008, http://webshopdev.db.erau.edu/info/AIAA-2010-1008-342.pdf

Problem No. 13 "Honey coils"

A thin, downward flow of viscous liquid, such as honey, often turns itself into circular coils. Study and explain this phenomenon.

IYPT history

- Congratulations to Jan Binder and Andreas Landig!
- First IYPT-driven research paper in a journal included in the Web of Science (Eur. J. Phys.)
- First among IYPT-driven papers to get cited by a journal included in WOS (Ann. Rev. Fluid Dyn.)
- Serious citation by a major group in a journal with the 2011 impact factor of 12!
- Citation related to the IYPT 2013 problem :-)

- Neil M. Ribe, Mehdi Habibi, and Daniel Bonn. Liquid Rope Coiling. Ann. Rev. Fluid Mech. 44, 249-266 (2012)
- Jearl Walker. The Amateur Scientist: Why do honey and syrup form a coil when they are poured? Scientific American 245, 3, 216-224 (1981)
- The Liquid Rope-Coil Effect (youtube.com, from psidot, 30.06.2007), http://www.youtube.com/watch?v=rEkuhC9eJIM
- MATH is SWEET! (High Speed Honey Coiling) Smarter Every Day 53 (youtube.com, from destinws2, 03.06.2012), http://www.youtube.com/watch?v=zz5lGkDdk78
- Honey Study Rope Coil Effect Raw Phantom Footage (youtube.com, from FunnerEveryDay, 02.06.2012), http://www.youtube.com/watch?v=9rC1x3zJbjM
- George Barnes and Richard Woodcock. Liquid Rope-Coil Effect. Am. J. Phys. 26, 4, 205 (1958)
- George Barnes and James Mackenzie. Height of Fall Versus Frequency in Liquid Rope-Coil Effect. Am. J. Phys. 27, 2, 112-115 (1959)
- Neil M. Ribe, Mehdi Habibi, and Daniel Bonn. Stability of Liquid Rope Coiling. Phys. Fluids 18, 268-279 (2006), http://hal.archivesouvertes.fr/docs/00/12/93/93/PDF/ribeetal_text.pdf
- N. M. Ribe. Coiling of viscous jets. Proc. R. Soc. Lond. A 460, 3223-3239 (2004)

- Christopher Batty and Robert Bridson. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In: Proc. 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-Ville, 2008), pp. 219-228
- L. Mahadevan, William S. Ryu, and Aravinthan D. T. Samuel. Fluid 'rope trick' investigated. Nature 382, 140 (1998), http://www.deas.harvard.edu/softmat/downloads/pre2000-11.pdf
- S. Chiu-Webster and J. R. Lister. The fall of a viscous thread onto a moving surface: a 'fluid-mechanical sewing machine'. J. Fluid Mech. 569, 89-111 (2006)
- N. M. Ribe, H. E. Huppert, M. A. Hallworth, M. Habibi, and Daniel Bonn. Multiple coexisting states of liquid rope coiling. J. Fluid Mech. 555, 275-297 (2006)
- Stephen W. Morris, Jonathan H. P. Dawes, Neil M. Ribe, and John R. Lister. Meandering instability of a viscous thread. Phys. Rev. E 77, 066218 (2008)
- Matthew Evan Thrasher. A Liquid Stream Bouncing off a Moving Liquid Bath. Master's thesis at the Univ. of Texas at Austin (July 2005), http://chaos.utexas.edu/manuscripts/1193518381.pdf
- M. Thrasher, S. Jung, Y.K. Pang, C.-P. Chuu, and H. L. Swinney. The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface (July 11, 2007), arXiv:0707.1721v1

Problem No. 14 "Flying chimney"

Make a hollow cylindrical tube from light paper (e.g. from an empty tea bag). When the top end of the cylinder is lit, it takes off. Explain the phenomenon and investigate the parameters that influence the lift-off and dynamics of the cylinder.

- Ronald D. Edge. The Ethnic Rocket. Phys. Teach. 35, 2, 110 (1997)
- Andrew DePino Jr. Another slow burn. Phys. Teach. 35, 5, 261 (1997)
- Denis Burchill. The flight of the humble tea bag. Phys. Educ. 39, 1, 22-23 (2004)
- Tea bag rocket: teacher's notes (Curtin Univ. Tech.), http://science.curtin.edu.au/local/documents/tea_bag_rocket.pdf
- Flying Tea Bag Rocket! (youtube.com, from MCExperiments, 13.02.2010), http://www.youtube.com/watch?v=Z14DpRre5Mk
- Home Experiment: Flying Tea Bag (youtube.com, from ThirstForScience, 07.09.2009), http://www.youtube.com/watch?v=TKF3OKxwM8g
- how to make a tea bag hot air balloon (youtube.com, from rishibalasaria, 17.05.2010), http://www.youtube.com/watch?v=PAswT9wqQwo
- Tea Bag Rockets Convection Current fire Experiment (youtube.com, from coolvids317, 13.11.2011), http://www.youtube.com/watch?v=GkkrXxJ4db8
- Tea Bag Rocket: a fun, at-home science experiment (from scienceoffcenter, 15.09.2011), http://www.youtube.com/watch?v=_st7NWnNtoY
- Flying Tea Bag Rocket (from JaySummer1, 03.11.2011), http://www.youtube.com/watch?v=YPp0JwHnSOA
- Thermal Convection of a Gas Paper Chimney (Univ. of Iowa), http://faraday.physics.uiowa.edu/heat/4B20.35.htm
- Make a tea bag rocket (fizzicseducation.com.au), http://www.fizzicseducation.com.au/experiments/force %20and%20movement/tea%20bag%20rocket.html
- How to Make a Tea Bag Rocket (wikihow.com), http://www.wikihow.com/Make-a-Tea-Bag-Rocket

Problem No. 15 "Meniscus optics"

Cut a narrow slit in a thin sheet of opaque material. Immerse the sheet in a liquid, such as water. After removing the sheet from the liquid, you will see a liquid film in the slit. Illuminate the slit and study the resulting pattern.

- Wikipedia: Diffraction, http://en.wikipedia.org/wiki/Diffraction
- Wikipedia: Meniscus, http://en.wikipedia.org/wiki/Meniscus
- Wikipedia: Young-Laplace equation, http://en.wikipedia.org/wiki/Young%E2%80%93Laplace_equation
- V. E. Dontsov and V. E. Nakoryakov. Pressure wave breakdown of a gas film in a liquid-filled slit. Fluid Dynamics 27, 5, 743-746 (1992)
- R. Valery Roy and Leonard W. Schwarz. On the stability of liquid ridges. J. Fluid Mech. 391, 293-318 (1999), http://capfluidicslit.mme.pdx.edu/reference/Capillary%20Phenomena/Interface %20Stability/Roy_JFM1999_LiquidRidgeStability.pdf
- M. Deserno. The shape of a straight fluid meniscus (2004), http://www.cmu.edu/biolphys/deserno/pdf/meniscus.pdf
- Solving a Young Laplace equation for a meniscus against a flat plate (physics.stackexchange.com, 2011), http://physics.stackexchange.com/questions/4247/solving-a-young-laplace-equation-for-a-meniscus-against-a-flat-plate
- A. S. Nemirovskii and B. P. Grishkov. Measurement of a meniscus profile. Measurement Techniques 9, 2, 259-260 (1966)
- Christophe Clanet and David Quéré. Onset of menisci. J. Fluid Mech. 460, 131-149 (2002), https://www.irphe.fr/~clanet/PaperFile/JFM-Meniscus.pdf
- J. C. Biery and J. M. Oblak. Calculational Method for Determination of Surface Tensions from Photographed Menisci. Application to Water and Mercury. Ind. Eng. Chem. Fundamen. 5, 1, 121-128 (1966)
- Eugene Hecht. Optics (Addison-Wesley, 4ed, 2001)

Problem No. 16 "Hoops"

An elastic hoop is pressed against a hard surface and then suddenly released. The hoop can jump high in the air. Investigate how the height of the jump depends on the relevant parameters.

Vibrationen eines Ringes in seiner Ebene.

(Von Herrn R. Hoppe.)

Ein elastischer Ring, dessen Figur durch Rotation eines kleinen ebenen Flächenstücks um eine entferntere Axe entsteht, ist im allgemeinen für jede gerade Knotenzahl zweier Arten ebener Vibrationen fähig; bloss für keinen und für zwei Knoten giebt es nur je eine periodische Bewegung. Die radiale und die peripherische Verschiebung bedingen sich gegenseitig und sind von gleicher Ordnung der Kleinheit. Mit wachsender Knotenzahl geht die langsamere der zwei unabhängigen Vibrationen in eine rein radiale, die schnellere in eine rein peripherische als Grenze über, so dass beide einzeln den Charakter der Transversal- und Longitudinalschwingungen gerader Stäbe annehmen.

Jumping hoops

Eunjin Yang and Ho-Young Kim^{a)}

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea

(Received 24 April 2011; accepted 17 August 2011)

We investigate the dynamics of an elastic hoop as a model of the jumps of small insects. During a jump the initial elastic strain energy is converted to translational, gravitational, and vibrational energy, and is dissipated by interaction with the floor and the ambient air. We show that the strain energy is initially divided into translational, vibrational, and dissipation energies with a ratio that is constant regardless of the dimension, initial deflection, and the properties of a hoop. This novel result enables us to accurately predict the maximum jump height of a hoop with known initial conditions and drag coefficient without resorting to a numerical computation. Our model reduces the optimization of the hoop geometry for maximizing the jump height to a simple algebraic problem. © 2012 American Association of Physics Teachers. [DOI: 10.1119/1.3633700]
Background reading

- Eunjin Yang and Ho-Young Kim. Jumping Hoops. Am. J. Phys. 80, 1, 19-23 (2012), http://fluids.snu.ac.kr/publication/hoops.pdf
- R. Hoppe. Vibrationen eines Ringes in seiner Ebene. Journal f
 ür die reine und angewandte Mathematik 73, 158–170 (1871)
- J. Kirkhope. In-plane vibration of a thick circular ring. J. Sound Vib. 50, 219–227 (1977)
- P. S. Raux, P. M. Reis, J. W. M. Bush, and C. Clanet. Rolling ribbons. Phys. Rev. Lett. 105, 044301 (2010)
- J. L. Lin and W. Soedel. On general in-plane vibrations of rotating thick and thin rings. J. Sound Vib. 122, 547–570 (1988)
- W. F. D. Theron. The dynamics of an elastic hopping hoop. Math. Comput. Model. 35, 1135–1147 (2002)
- T. F. Tokieda. The Hopping Hoop. Am. Math. Monthly, 104, 2, 152–153 (1997)
- T. Pritchett. The Hopping Hoop Revisited. Am. Math. Monthly, 106, 7 609-617 (1999)
- J. B. Buttler. Hopping Hoops don't Hop. Am. Math. Monthly, 106, 6, 565-568 (1999)

Problem No. 17 "Fire hose"

Consider a hose with a water jet coming from its nozzle. Release the hose and observe its subsequent motion. Determine the parameters that affect this motion.

Background reading

- Ned Kahn. Fountain of Instability (exploratorium.com, 1996), http://www.exploratorium.edu/complexity/exhibit/fountain.html
- Wikipedia: Firehose instability, http://en.wikipedia.org/wiki/Firehose_instability
- Olivier Doaré and Emmanuel de Langre. The flow-induced instability of long hanging pipes. Eur. J. Mech. A / Solids 21, 857–867 (2002), http://www.offladhyx.polytechnique.fr/publications/documents/doare2002rp-2pp.pdf
- Garden Hose instability: Slow Motion (youtube.com, from Olivier Doaré, 20.07.2012), http://www.youtube.com/watch?v=KMxyy5NrZ-o
- C. C. Ni and R. J. Hansen. An experimental study of the flow-induced motions of a flexible cylinder in axial flow. J. Fluids Eng. 100, 389 (1978)
- M. P. Païdoussis. Dynamics of tubular cantilevers conveying fluid. J. Mech. Eng. Sci. 12, 85–103 (1970)
- Richard Barrans Jr. Water Hose and Pressure (newton.dep.anl.gov), http://www.newton.dep.anl.gov/askasci/phy99/phy99x11.htm

Background reading

- 2.25. Firehose instability. In: Julien Clinton Sprott. Physics Demonstrations: A Sourcebook for Teachers of Physics (Univ of Wisconsin Press, 2006), Vol. 1, pp. 131-132, http://books.google.se/books?id=9wmgYl49YQ0C, http://sprott.physics.wisc.edu/demobook/chapter2.htm
- M. P. Païdoussis and M. Tetreault-Friend. Aspirating cantilevers and reverse sprinklers. Am. J. Phys. 77, 4, 349-353 (2009)
- Water Jet Pack: Get High with Jetlev! (youtube.com, from devinsupertramp, 12.04.2011), http://www.youtube.com/watch?v=im1iNq02Kz0
- firemen lifting a car with WATER HOSES! (youtube.com, from animes25, 12.09.2007), http://www.youtube.com/watch?v=zP53h5yrE48

what are its x, y, and z components in to (b) Compute $(\hat{\mathbf{r}} \cdot \nabla)\hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is the uni (c) For the functions in Prob. 1.15, evalu

Problem 1.22 (For masochists only.) Problem 1.22 (For masochists only.) Problem 1.22 ($\mathbf{A} \cdot \nabla$) **B**.

Problem 1.23 Derive the three quotien

Problem 1.24

(a) Charles 1 + 1 + 1 + 1 = 1

The ultimate response to all "What for?"-questions:

" If we knew what we were doing, it wouldn't be called research!"

Albert Einstein

In Riocher

To work towards results?

Nobody needs an infinitely perfect report in an infinite time!

- If you cannot solve the entire problem, decide what is really necessary and solve a partial problem
- If you can solve the entire problem, nevertheless decide what partial case is sufficient, and your solution will be much better
- Be brave in what you do, but always reserve a great degree of scientific skepticism!
- Procrastination is definitely a risk :-)

Feynman: to be self-confident?

- "I've very often made mistakes in my physics by thinking the theory isn't as good as it really is, thinking that there are lots of complications that are going to spoil it
- an attitude that anything can happen, in spite of what you're pretty sure should happen."

R.P. Feynman. Surely You're Joking, Mr. Feynman (Norton, New York, NY, 1985)

Preparation to 26th IYPT' 2013: references, questions and advices

Ilya Martchenko, ¹* Andrei Klishin, ² Reza Montazeri Namin, ³ Piotr Podziemski, ⁴ Stanisłaŭ Piatruša, ⁵ Łukasz Gładczuk, ⁶ Stanisław Świdwiński, ⁷ and Andrei Schetnikov ⁸

¹ Univ. of Fribourg and Lund Univ.; ² Massachusetts Inst. of Tech.;
 ³ Sharif Univ. of Tech.; ⁴ Warsaw Univ. of Tech.; ⁵ Belarusian State Univ.;
 ⁶ Univ. of Warsaw; ⁷ Almukantarat, Warsaw; ⁸ SIGMA, Novosibirsk

July 28...September 28, 2012

* to whom correspondence should be addressed: ilya.martchenko@unifr.ch http://ilyam.org